1984

	Question Booklet No	
	(To be filled up by the candidate by blue/black ball-point pen)	
Roll No.		
	ts in words) Code N. (4	85)
Serial No. of	OMR Answer Sheet	
Day and Date	(Signature of Invigila	itor)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the OMR Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMK sheet and also Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any changes in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गये हैं।]

Total No. of Printed Pages: 14

No. of Questions: 150

Time	: 2 Hours]					[Full Marks: 450
Note :	(i) Attempt as more mark we awarded for ea (ii) If more than or choose the close	r ill be ch un ne alte	e deducted for a attempted questio ernative answers	e <mark>ach</mark> n.	incorrect answ	ver. 2	Zero mark will b
1. 2.	(4) 0 1111	(2) rially	Muramic acid obtained from:				Galactoside
3.		wing	classes of fungi	sho		ee of	degeneration of
4.	Which among the (1) <i>Pellia</i>	follov (2)	wing is call <mark>ed ρε</mark> Sphagnum	eat n (3)	noss ? Funaria	(4)	Porella
5. 6.	Microsporangia ar (1) Selaginella Which one of the f	nd ma (2)	icrosporangia ar Dryopteris	e fo (3)	rmed in the sam Equisetum	e str((4)	obilus of : <i>Lycopodium</i>
7.	(1) Carotenoids Which of the follow	(2) wing	Fucoxanthin	(3)	Chlorophylls	(4)	Phyeocyanin
8.	(1) Rust fungiSporogonium of R(1) Seta and capsu(3) A simple capsu	iccia i ile ile		(2)	Foot, seta and co	apsul	p
9.	When sporangia in (1) Leptosporangi (3) Heterosporangi	ı a fer ate giate	n develop from	a sir (2)	igle initial <i>cll, it i</i> Eusporang <i>te</i>	s call	ed :
10.	Which of the follow (1) Simple filamer (3) Heterotrichous	ving a ntous	algal thallus is co	onsid (2)	dered as higl _{evol} Colonial Siphonaceou	ved?	

11.	In which one of the (1) <i>Dictyota</i>	follo (2)	owing algae ooga <i>Oedogonium</i>		ıs sexual reprodı <i>Chara</i>		on is <i>not</i> found <i>Zygnema</i>
12.	Which of the follow (1) Bordeaux mixts (3) 2, 4-D	ing are	is a fungicide?	` /	D. D. T. Amphicilin		
13.	Elators are present (1) Selaginella		e sporogonium <i>Riccia</i>		Marchantia	(4)	Sphagnum
14.	Amphiphloeic siph (1) <i>Ophioglossum</i>				Pteris	(4)	Lycopodium
15.	lsomorphic alternal (1) Fritschiella		of <mark>generation is</mark> . Vaucheria		d in : <i>Spirogyra</i>	(4)	Volvox
	What is the mode o (1) Autotrophic	(2)	Parasitic	(3)		, ,	Saprophytic
17.	In which of the bry is found?						
18.	(1) Funaria Gametic meiosis tal (1) Polysiphonia (2) Sargassum	• •	Riccia place in :	(2)	Anthoceros Ulothrix Draparnoldiopsis		Marchantia
19.	(3) SargassumWhich one of the fo(1) Uredospore		ing spores of Pt Teleutospore	ıccin	ia is haploid?		Basidiospore
20.	Heterothallism in for (1) Bessey	(2)	Robert Hooke	(3)		(4)	Blakeslee
21.	In bryophytes redu (1) Sex organ form (3) Gamete format	auoi	n division takes j n	(4)	e at the time of : Spore formation Capsule format	n ion	
22.	Porphyrais:	inate	2	(4)	An edible alga A source of iod	ine	
23	Potato famine III	(2)	Albugo	(3)	Sive attack of the Phytophthora	e fur (4)	igus : Ustilago
	(1) Alternaria (1) A. Kashyap is f	mou: (2)	s in the field of: Bryology	(3)	Mycology s of visible ligh	(4)	Pteridology
2	(1) 1113 me of	9 10 1	nowing wavele	ngth	s of visible ligt	nt is	absorbed by
	25. Which one of phycoerythrin (1) 420 nm	(2)	610 nm (2)	(3)	660 nm	(4)	540 nm
	(I)		(- /				

26.	Ocheate stipules are (1) <i>Citrus</i>		nd in : <i>Ixora</i>	(3)	Polygonum	(4)	Ageratum
27.	Winged petioles are (1) Aegle		nd in : <i>Argemone</i>	(3)	Callistemon	(4)	Citrus
28.	Which of the follow (1) <i>Striga</i>		is partial root pa Parthenium		te ? <i>Loranthus</i>	(4)	Nepenthes
29.	Total number of ser (1) 19	ies i (2)		Hoo (3)			fication is : 24
30.	Ligulate leaves are (1) Liliaceae	foun	d in :	` '	Euphorbiaceae	(4)	Cycas
31.	Flowers are unisexu		-	(+)		\ /	J
	(1) Zingiberaceae		2 1	(3)	Euphorbiaceae	(4)	Rutaceae
32.	Floral bud is modif (1) Antigonon	(2)	Pisum	, ,	Coccinia		Bignomia
33.	Which of the follow (1) Syngenesious s (2) Monothecous a (3) Syngenesious s (4) Superior ovary	tame nthe tame	ens, inferior ova ers, superior ova ens, cypsella frui	ry ai ry ai its ai	nd basal placenta nd axile placenta nd superior ovar	atior tion V	
34.	Pentoxylon was dis (1) Nilgiri Hills	cove	ered by Birbal Sa	hni			Satpura Hills
35.	Cycas ovule is: (1) Campylotropou (3) Orthotropous				Hemianatropou Anatropous		1
36.	Birbal Sahni Institu	te of	Palaeobotany is	` '			
	(1) New Delhi	(2)	Lucknow	(3)	Dehradun	(4)	Bhubaneshwar
37.	Stevia rebaudiana a r	atur	al sweetner plan			:	
20	(1) Asteraceae		Solanaceae	(3)	Poaceae	(4)	Apiaceae
38.	Branched stamens a (1) Triticum aestivu		ouna in :	(2)	Calatronia ara-		
	(3) Ricinus commun				Calotropis procert Solanum nigrum	7	
39.	Which type of embr	yosa	ac is found in Al	lium	1?		
	(1) Monosporic typ(3) Tetrasporic typ	oe -		(2)	Bisporic typ Polygonumpe		
40.	In angiosperms, en	bryo	osac represents :		•		
	(1) Megagametopl (3) Megagamete	ıyte		(2) (4)	Megasporor ₃		
	(0)		(3)		Pole		

41.	Cortical	vascular bu	indl	es are foun	d in:				
	(1) Salva	adora	(2)	Achyranth	es	(3)	Nyctanthes	(4)	Boerhavia
42.	Perisper	m in the sec	eds (develops fr	om:	, ,	<i>J</i>	(-)	
	(1) Nuc	ellus	(2)	Funiculus			Hilum	(4)	Ovary wall
43.	Pollinati	on through	leve	er mechanis	sm tal	kes į	place in :		,
	(1) Calo	tropis	(2)	Salvia		(3)	Ficus	(4)	Hydrilla
44.		ed stomata a							
		s needles							
4 ==		um leaves							
45.	Trimero						placentation is I		
40	(1) Sola						Cucurbitaceae	(4)	Asteraceae
46.							is found in:	(4)	D
		raceae			ceae	(3)	Liliaceae	(4)	Poaceae
47.		seeds are fo							4.41
	(1) <i>Pinu</i>	S	(2)	Cycas		(3)	Papaver	(4)	Adhatoda
48.	Parachut	te mechanis	m o	f seed disp	ersal i	is dı	ie to:		
	(1) Brac	ts	(2)	Pappus		(3)	Tepals	(4)	Thorns
49.	The ende	osperm of P	inus	is:					
		loid				(3)	Diploid	(4)	Tetraploid
50.	Gynobas	sic style is fo	ound	t in the fam	nily:				
	(1) Rani	unculaceae	(2)	Papaverac	eae	(3)	Apiaceae	(4)	Lamiaceae
51.	"Rate of	change of n	uml	er of speci	es per	uni	it change in habi	tat"	is known as
• • • • • • • • • • • • • • • • • • • •	(1) Alph	na diversity	(2)	Beta diver	sity	(3)	Gama diversity	(4)	Biodiversity
E 0	Which o	(the follow	ino l	nas been re	cooni	zed	as a mega diver	se co	untry?
52.	/1) Now	Zooland	(2)	Austria	208	(3)	Australia	(4)	Nepal
53.		presents:	rous	s forests		(2)	Temperate gras	slan	d
	(1) Nor	thern conne	duoi	us forests		(4)	Savannah grass	land	
	(3) Tem	thern counce operate deci	4	a culmoro	od by	drai	ahyte?		
r A	which (of the follow	mg -	is submergi	eany	(3)	Vallisneria	(4)	Lemma
54.	(1) Eicl	iliornia	(2)	Azolla	. ,	(3)	V IIII LONE / III	(-)	
	(1)	ilioriila a maximum a cetic plain	oiod	iversity is t	ouna	in :	Western Ghats		
55.						(4)	Eastern Ghats		
	(1) 60	a maxime ingetic plain ans-Himald	an i	region		, .	Eastern Ottats		
	(3) Tr	ingetic plain Ingetic plain Himald Tans Himald	us"	is used to r	efer:				
	The t	rans-Himale rans-Himale erm "etenoe Varrow rans Wide range	of ter	nperature t	tolera	nce			
5		100	164477 47	11, 10,					
	(1)	Wide range Narrow ran Narrow ran	of foo	od selection	1				
	(2)	Marrov rai	مطغه	Jaime Selecti	ion				
	(3)	Narra	-		(4)				
	(4)	•							

57.	Which of the follow (1) <i>Hg</i>	.,,	causes the Ita Cr		sease ? Pb	(4)	Cd
58.	The average salinit (1) 35%	-	sea water is : 3.5%	(3)	5.3%	(4)	0.35%
59.	The term "aufwuch (1) Plankton		used to refer Nekton		Neuston	(4)	Periphyton
60.	Which one of the formal pox		ring is a water Cholera		disease ? Malaria	(4)	Tuberculosis
61.	Marginal necrosis (1) SO ₂ toxicity (3) Ozone toxicity		ip-burn in lea	(2)	diagnostic syn NO2 toxicity Fluoride toxic	-	m of :
62.	•						
63.							
64.	Which of the follow growth?	ving	form of soil w	vater is	most common	ly ava	ailable for plant
	(1) Hygroscopic w(3) Capillary wate	r		(4)	Gravitational v Echard water		
65.	In an ecological sthemselves in the r		Tace 15 KHOW	rocess n as :	by which the	mig	rants establish
•			Migration		Ececis	(4)	Aggregation
66.	Climax stage is pre (1) High entropy (2) K-selection typ (3) Species with br (4) Open nutrient of	e spe oad 1	cies		by:	,	
67.	Which of the follow (1) Sulphur dioxid (2) Fluoride pollut (3) Methyl isocyan (4) Ozone depletio	e - 16 ion - ate -	eeth Bhopal 89s tra Acid rain		hed ?		

68.	J-shaped population growth curve is <i>no</i> (1) House fly	t found in : (2) Cassia tora
	(3) Elephant	(4) r-selection type species
69.	(3) Ecological efficiency	(2) Net primary productivity(4) Turnover rate
70.	Which of the following is the most come (1) Random (2) Contagious	mon pattern of population dispersion ? (3) Regular (4) Uniform
71.	Acid rain has pH: (1) <7.6 (2) <7.0	(3) <5.6 (4) <1.6
72.	The "continuum" concept of vegetation (1) Individualistic approach (3) Typal approach	organization is also known as: (2) Zonal approach (4) Organismic approach
73.	For narrow leaves, the value of Kemp's (1) 0.6 (2) 0.9	constant is: (3) 6.0 (4) 9.0
74.	Which National Park is situated in Utta (1) Jim Corbett National Park (3) Gir National Park	r Pradesh ? (2) Dudhwa National Park (4) Kaziranga National Park
75.	In a water body, algal bloom is an indic(1) Nutrient enrichment(3) Pollution due to pesticides	(4) Pollution due to metals
76.	A plant growth regulator related to inh (1) Ethylene (3) Jasmonic acid	(4) Gibberellic acid
77.	Function of leg haemoglobin in root no (1) To prevent respiratory O_2 uptake O_2 uptake O_3 .	(4) To remove O ₂
78.	Diffusion pressure deficit of a fully tur (1) Zero (2) Turgor pressure of cell	
79	(2) Turger 1 (3) Osmotic pressure of cell (4) Product of turgor and osmotic pro (4) Product of turgor and osmotic pro (5) Which of the following group of company of the synthesis of polypptide chain? (6) AUA, GAU, LAA (1) AUA, AGU, LAA (3) AUA, AGU, LAA (4) (6)	(2) AAU, GAU, GUA (4) UAA, UAC, UGA

80.	The technique and experimental orga	inism used by Calvi	in for 'Calvin Cycle'
	were: (1) X-ray technique and <i>Chlamydomona</i>	1c	
	(2) Radioactive isotope technique and		
	(3) Radioactive isotope technique and		
	(4) Nuclear magnetic resonance techni	ique and <i>Spirogyra</i>	
81.	A pigment concerned with both floral i (1) Florigen (2) Chlorophyll	induction and seed g (3) Plastocyanin	
82.	The bacterial genera carrying out	nitrification, nitration	_
	symbiotic nitrogen fixation, respectivel	ly are:	-
	(1) Rhizobium Azotobacter, Nitrosomonas		
	(2) Nitrosomonas, Nitrobacter, Rhizobium	n and Azotobacter	
	(3) Nitrosomonas, Nitrobacter, Azotobacte(4) Nitrobacter, Nitrosomonas, Azotobacte	er and Rhizobium	
83.			in a said in .
	The organic acid which plays a key role (1) Pyruvic acid	e in the synthesis am (2) Malic acid	ino acid is :
	(3) α-Ketoglutaric acid	(4) Oxaloacetic ac	id
84.	The terms, apoplast' and 'symplast' wer	. ,	
	(1) Dixon (2) Clark	(3) Munch	(4) Fisher
85.	In split genes, the coding sequence is ca	alled:	
	(1) Sistrons (2) Operons	(3) Exons	(4) Introns
86.	Which of the following molecule has be	oth α 1-4 and α 1-6 lin	nkages ?
	(1) Maltose (2) Cellulose	(3) Amylose	(4) Amylopectia
87.	The pathway that converts fat to carbol	nydrate is :	
	(1) Calvin pathway	(2) Glyoxylate pat	hway
00	(3) C ₄ pathway	(4) Glycolate path	way
88.	Which of the following plant is an exam (1) <i>Mirabilis jalapa</i>		nt?
	(3) Xanthium strumarium	(2) Beta vulgaris	
89.		(4) Lycopersicum est	culentum
05.	Which of the following nutrient element (1) Phosphorus (2) Potassium	(3) Calcium	lants?
00		(5) Carcium	(4) Magnesium
90.	Which of the following enzyme is a mite (1) Aldolase	(a) Amylogo	Zyme ?
	(3) Succinic dehydrogenase	(2) Amylase	
		(4) Pyruvate deh	Ogena
91.	In chloroplast, 'ATP synthase is located	•	o-riase
	(1) Inner membrane	(2) Outer menrane	
	(3) Thylakoid men <i>brane</i>	(4) Grana	

92.	During EMP pathway, The ATP is prod (1) Oxidative phosphorylation (3) Sustrate level phosphorylation	(2) (4)	Cyclic phospho Photophosphor	-	
93.	Which of the following pigment is soluble (1) Carotenoids (2) Chlorophylls	ole ii (3)	n water ? Phycocyanin	(4)	Xanthophylls
94.	Aptamers are: (1) RNA molecules (2) DNA		Protein		Amino acids
95.	In photosynthetic electron transport, the urea inhibit electron transport between	:			
	(1) P₆₈₂ and Ubiquinone(3) Plastoquinone and Cytochrome f	(4)	Cytochrome f and Ubiquinone and	d Pla	istoquinone
96.	Which of the following enzymes initiate (1) DNA polymerase I	(2)	DNA polymera		
97.	(3) DNA polymerase III The peptidyl transferase enzyme is		RNA polymera		ch unit of the
57.	ribosome:		50S		A site of 30S
98.	(1) 305 (2) 705 Cellulose is polymer of:	(3)	300	(-)	
50.	(1) α -1 -Glucose (2) β -D -Glucose	(3)	α-D -Glucose	(4)	β-L -Glucose
99.	Glutathione is a:	(2)	Tripeptide		
	(1) Dipeptide(3) Monosaccharide	(4)	Disaccharide		
100.	Ethylene is produced from amino acid	- (3)	Tyrosine	(4)	Serine
101.	A mutant of E-coli grows normally on the most likely metabolic pathway that	115	ose or on glycero defective in this r Hexose monop	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
	(1) Glyoxalate cycle (3) Krebs cycle	(4)	Enter-Duodore	off p	athway
400	The day which phase of bacterial grow	th t	pacteria increases	in	size but do not
102.			0.11	7.43	D 0 1
	(1) Lag (1) Lag (2) Log (1) Lag (3) All the following may be methods for the following may be metho	or th	e inhibition of r	nicro	obial growth by
103	3. All the following antibiotics except: (1) Antibiotis interfece with cell men (2) Antibiotis privent the release of (3) Antibiotics inbit the synthesis of (4) Antibiotics in the synthesis of (8)	obra	ne function		
	(3) Antibio is inbit the synthesis of	pro	tent		
	(4) Ann (8))			

104.	A bacterial culture contained 32 × growth. If the doubling time was 3	10^6 cells after 2.5 he min, what was the	ours of exponential e initial population
	number in this culture? (1) 20×10^4 cells (2) 10×10^5 cells		
105.	Genome of HIV is:		(4) ds RNA
	(1) ss DNA (2) ss RNA	(3) ds DNA	(4) (3 11.07
106.	A T-series bacteriophage can be recog(1) Tadpole shape(3) Irregular shape	(2) Rounded shape (4) Rhomboidal sh	ape
107.	Bacteriophage that lyse the bacterial c (1) Systemic (2) Virulent	cell shortly after infect (3) Immune	ion are termed as : (4) Temperate
108.	Endosymbiotic evolution is supposed(1) Chloroplast(3) Golgibodies	(2) Mitochondria	ast and mitochondria
109.	Becteroids is a special form of bacteria (1) Photosynthesis (3) Respiration		ion
110.	Which of the following is/are correct A. It is free living nitrogen fixing ba B. It is a symbiotic nitrogen fixing b C. It is obligate aerobe D. It is obligate anaerobe	about Azotobacter?	
	(1) A and C (2) A and D	(3) Only C	(4) Only B
111.	No. of binding sites for O_2 molecules (1) 1 (2) 2	in a single leghaemog	slobin molecule : (4) 4
112.	The final stage of alcohol production (1) Fermentation (2) Refinement		(4) Distillation
113.	The intoxicating substance in beer, w (1) Ethanol (2) Phenol	rine and liquor is. (3) Isopropyalcol	of (4) As
114.	The first known antibiotic is: (1) Chloramphenicol (2) Kanamyo	in (3) Penicillin-C	
115.	(1) Nutrient agar(3) Sulfite waste liquor	(4) Whey	
116.	In industrial production of stre by-product is: (1) Vitamin 12 (2) Vitamin C	ptomycin the secor	dar fabolite or (4)
	(9)	1

	 (1) Its mycelium is black in colour (2) It parasitizes cereals (3) The host becomes completely blac (4) The fungus produces black sooty services 	k		
118.	Target board effect' is caused by :	-		
119.	(1) Alternaria (2) Colletotrichum Plant disease 'Papaya mosaic' is caused (1) Part	(3) Lby:) Pyricularia (4) Helminthosporium.	1
	(1) bacteria (2) Virus) Fungi (4) Mycoplasma	
120.	Heterothallism means: (1) Fusion of thalli of same strain (3) Formation of zygospore) Fusion of thalli of different strain Formation of conidia	
121.	Which disease in plants is caused by ba			
	(1) 'Die-back' in citrus(3) 'Leaf curl' in tomato	(2)	'Tikka' in groundnut 'Stem rot' in maize	
122.	A condition of overgrowth or excessive		evelopment of an organ or its part	ţ
	usually due to infection by a pathogen (1) Hypotrophy (2) Atrophy	1S: (3)	Hyperplasia (4) Hypertrophy	
123.	The fungicide 'Bordeaux mixture' was o	disco	overed by :	
	(1) H. Martin (3) C. A. Peterson	(2)	A. Millardet S. D. Garrett	
124.	Phytoalexins are formed in plants: (1) After fungal infection (2) After fungal contact with plant	(4)	Before fungal infection All of the above	
125.	Of the following, the lungicide that is s	ysten) 73)	Indofil-45 (4) Sultex	
126.	(1) Bavistin The latest model that is proposed	to	explain the structure of plasm	a
120.	membrane: (1) Unit membrane nodel (1) Unit membrane vode!	(2) (4)	Fluid mosaic model Thin lipid layer concept	
127	(3) Artification (2) Interphase	divisi (3)	sion the DNA <i>content</i> is doubled? Metaphase (4) Telophase	
12	G_1 , G_2 , M	(3)	S, G_1, M, G_2 (4) M, G_1, G_2, S	
	(1) 0 , (1) a pyrimidine nucleotide	by a	a purine nucleotide is known as:	
1	29. Replacepion mutation (1) Tran mutation (10)	(2)	Frame shift nutation Transition nutation	
	(3) R (10)			

130.	(1) Monosomic chromosome	(2) Trisomic chromosome
131.		(4) Bisomic chromosome
	(1) Rounded bodies(3) Sex chromosome	(2) Type of protein(4) Node like structure on-chromosome
132.	The cross of <i>f</i> , hybrid with either its do (1) Test cross	ominant or recessive parent is known as : (2) Back cross
100	(3) Reverse cross	(4) Polygenic inheritance
133.	Which is the characteristics of Euchror (1) Small (3) Tightly packed	natin ? (2) Light stained (4) Inactive in transcription
134.	Which one of the following is alkylatir (1) 5-Bromo uracil	ng agent ?
	(3) Hydrazine	(2) 5-chloro uracil(4) Ethylethane sulphonate
135.	Which histone is known as linker histo	one?
	(1) H_1 (2) H_2A	(3) H_3 (4) H_4
136.	mai occui uuring meiog	es are based on the average number of sis.
	 (3) For small map intervals (<20 cM), a single crossover in the interval. (4) The expected frequency of do 	the map distance equal the frequency of
127	erossover	occur dependently.
137.	Anastral mitosis is characteristics of : (1) All living organism (3) Lower animals	(2) Higher plants(4) Higher animals
138.	The phenomenon of masking the expression is known as:	ression of a gene by another non allelic
400	(1) Mutation (2) Epistasis	(3) Heterosis (4) Dominance
139.	Bar eye in Drosophila is due to: (1) Duplication (2) Deficiency	(3) Inversion
140.	The phenomenon of heterosis is:	(f) Translocation
	(1) Structural hybridity(3) Hybrid incompatibility	(2) Hybrid serility (4) Hybrid vyour
	(11)	-

141.	Cytoplasmic male sterility is inherited:		
	(1) Paternally (3) Bacteriophage multiplication	(2) Maternally (4) Paternally and Maternally both	
140			
142.	A gene which synthesizes a repressor protein is known as: (1) Regulator gene (2) Operator gene		
	(1) Regulator gene(3) Promoter gene	(4) CAP	
143.	Which of the following is <i>not</i> related with karyotype?		
140.	(1) Number of chromosome	(2) Size of chromosome	
	(3) Chemical nature of chromosome	(4) Shape of chromosome	
144.	Who wrote the famous book 'Origin of !	Species'?	
	(1) Lamarck	(2) Charles Darwin	
	(3) De Vries	(4) Mendel	
145.	XX-XO type of sex determination is fou	ind in:	
	(1) Hen (2) Cock	(3) Grasshopper (4) Kuma sp.	
146.	The most important use of haploids in the production of:		
	(1) Homozygous diploids	(2) Heterozygous diploids(4) Segmental allopolyploids	
	(3) Amphidiploids	(4) Segmental anopolypholes	
147.	Raphanobrassica is an example of:	(a) Diploid	
	(1) Haploid	(2) Diploid(4) Allopolyploid	
	(3) Autopolyploid		
148.	Which statement is <i>incorrect</i> for multiple allelism? (1) Eye colour in drosophilla is an example of multiple allelism.		
	(1) Eye colour in drosophina is an example (2) ABO blood groups in humans is d	lue to multiple allelism.	
	(2) AB() blood groups it it it it is a (3) It follows Mendel's concept of inhe	eritance.	
	(3) It follows Mendel's concept of fine(4) Skin colour in rodents may be expl	lain by multiple allelism concept.	
	Meiosis involves:		
149.	Meiosis involves: (1) One division of nucleus and nuc	livision of chromosome	
	 (1) One division of nucleus and one division of Chromosome (2) Two division of nucleus and two division of chromosome (3) One division of nucleus and two division of chromosome 		
	(2) One division of nucleus and two d	division of chromosome	
	The division of Italian		
450	in the one of the following is not characters.		
150	2 APOSS DUITING	,	
	a single pair of alleles.	89:3:3:1.	
	a single partie ratio in f , generation is $9:3:3:1$.		
	(2) It produces genery produces of a sing	It is a cross between property of alleles. a single pair of alleles. Phenotypic ratio in f, generation is 9:3:3:1. Phenotypic ratio of 1:2:1 in f ₂ generation. It produces genotypic ratio of a single trait. It studies the inheritance of a single trait.	
	the state of the internation of the state of		
	(4) 11 3		

अभ्यर्थियों के लिए निर्देश

(इस पुरितका के प्रथम आवरण-पृष्ट पर तथा ओ०एम०आर० उत्तर-पत्र के दोनों पृष्ठों पर केवल *नीली/काली बाल-पाइंट पेन* से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुरितका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुरितका पर अनुक्रमांक संख्या और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार बाल-प्वाइंट पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर भून्य अंक दिये जायेंगे।
 - 11. एफ कार्य के लिये इस पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा अंतिम खाली पृष्ठ का

प्रयाग पर केवलगो० एम० आर० उत्तर-पत्र ही परीक्षा भवन में जमा करें।
12. परीक्षा के उपरान्त केवलगो परीक्षा भवन के

- 12. परादा। प्रमाप्त होने से पर्ग परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
 13. परीक्षा समाप्त होने से पर्ग अनुचित साधनों का स्क्रीप 13. परीक्षा समापा परीहमें अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित 14. यदि कोई अभ्यर्थी परीहमें अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित
 - दंड का / की भागी हो होगी।