Mrs Computer Science (486)

15P/208/2

Question	Booklet	No
Aucanoit	DOUBLEL	1100

(To be filled up by the candidate by blue/b	lack ball-point pen)
Roll No.	,
Roll No. (Write the digits in words)	
Serial No. of OMR Answer Sheet	.,
Day and Date	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall
 not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Bookiet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.

i

14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

| उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं|

[No. of Printed Pages: 32+2

15P/208/2

No. of Questions/प्रश्नों की संख्या : 150

Time/समय: 2 Hours/घण्टे

Full Marks/पूर्णांक : 450

Note:

- (1) Attempt as many questions as you can. Each question carries 3 marks.
 One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
 - अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 अंक का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जाएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।
- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
 - यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
- 1. In a vectored interrupt
 - (1) the branch address is assigned to a fixed location in memory
 - (2) the interrupting source supplies the branch information to the processor through an interrupt vector
 - (3) the branch address is obtained from a register in the processor
 - (4) branch address is assigned to variable location in memory

(330) (P.T.O.)

2.	If memory access takes 20 ns with cache and 110 ns without it, then the ratio				ratio
	(1) 93%	(2) 90%	(3) 88%	(4) 87%	
3.	The addressing n	node used in an	instruction of ti	ne form ADD XY, is	
	(1) absolute	(2) indirect	(3) index	(4) relative	
4.	—— register memory.	keeps track of t	he instructions	stored in program stor	ed in
	(1) AR (Address	Register)	(2) XR (Inde	x Register)	
	(3) PC (Program	Counter)	(4) AC (Acc	imulator)	
5.	Data hazards occ	our when			
	(1) greater perfor	mance loss		-	
	(2) pipeline chan	ges the order of	read/write acce	as to operands	
	(3) some function	nal unit is not fi	ally pipelined		
	(4) machine size	is limited			
6.	transfer data. The	bendwidth of the bar reduced to 12	is bus would be : 5 psec and the r	4 cycles of 250 nsec ea 2 megabytes/sec. If the number of cycles required the of the bus?	cycle
	(1) 1 megabyte/s	sec .	(2) 4 megab	ytes/sec	
	(3) 8 megabytes/	sec	(4) 2 megab	rytes/sec	
(330)	• -	•	2 .	- ·	

7.	If n has the va	lue 3, then the stat	ement $a[++n]=$	n + +	
	(1) assigns 4 to	a[5]	(2) assigns 4	to a [3]	
	(3) assigns 4 to	o a[4]	(4) produces 1	inpredictable results	
8.	In signed-magn (10011)2, then		n, if the dividend	is (11100)2 and divisor i	
	(1) (00100)2	(2) (10100)2	(3) (11001)2	(4) (01100)2	
9,		nory is of 8 K bytes mapping. Then ea		emory is of 2 K words. I	
	(1) 11 bits	(2) 21 bits	(3) 16 bits	(4) 20 bits	
10.	PSW is saved in stack when there is a				
	(1) interrupt re	cognized	(2) execution of	of RST instruction	
	(3) execution of	CALL instruction	(4) All of these	•	
11.	The multiplicand register and multiplier register of a hardware circuit implementing booth's algorithm have (11101) and (1100). The result shall be				
	(1) (812)10	(2) (-12)10	(3) (12)10	(4) (-812)10	
12.	'Aging registers'	are			
	(1) counters whereferenced	ich indicate how lo	ong ago their ass	ociated pages have been	
	(2) registers wh	ich keep track of w	hen the program	was last accessed	
	(3) counters to	keep track of last a	ccessed instructi	on ·	
	(4) counters to	keep track of the la	itest data structu	res referred	
(330)		3		(P.T.O.	
-					

15.	(3) signed bit A device/circui	t that goes through	(4) unsigned b	it uence of states upon	the
		input pulses is call			
	(1) register	(2) flip-flop	(3) transistor	(4) counter	
1 6 .	contains the n		ctive address in th	ess part of the instruct se relative address mo	
	(1) 849	(2) 850	(3) 801	(4) 802	
17.	(1) 849		(3) 801	• •	
17.	(1) 849	(2) 850 ollowing is a datab	(3) 801	function?	
17.	(1) 849 Which of the f	(2) 850 ollowing is a datab	(3) 801 asc administrator's	function?	
17. 18.	(1) 849Which of the f(1) Database of(3) Performance	(2) 850 following is a datab lesign te monitoring	(3) 801 ase administrator's (2) Backing up (4) All of the a	function? the database above	
	(1) 849 Which of the fine (1) Database of (3) Performance Which of the fine (1)	(2) 850 ollowing is a datab lesign	(3) 801 ase administrator's (2) Backing up (4) All of the a	function? the database above ucture?	
	(1) 849 Which of the formance (3) Performance (1) Tree	(2) 850 following is a datablesign for monitoring following is not a log (2) Relational	(3) 801 ase administrator's (2) Backing up (4) All of the a egical database str (3) Network	function? the database above ucture?	
18.	(1) 849 Which of the formance (3) Performance (1) Tree	(2) 850 following is a datablesign for monitoring following is not a log (2) Relational	(3) 801 ase administrator's (2) Backing up (4) All of the a agical database str (3) Network	o function? the database above ucture? (4) Chain	ve

20.	What is the language used by me access data?	ost of the DBMSs for helping their users to
	(1) High-level language	(2) Query language
	(3) SQL	(4) 4GL
21.	A locked file can be	
	(1) accessed by only one user	
	(2) modified by users with the co	rrect password
	(3) is used to hide sensitive infor	mation
	(4) Both (2) and (3)	
22.	In SQL, which command is use statements issue since the beginn	d to make permanent changes made by ing of a transaction?
	(1) ZIP (2) PACK	(3) COMMIT (4) SAVE
23.	Which two files are used during o	peration of the DBMS?
	(1) Query language and utilities	
	(2) Data manipulation language a	nd query language
	(3) Data dictionary and transaction	n log
	(4) Data dictionary and query lan	guage
24.	Which one of the following statem	ents about normal forms is FALSE?
	(1) BCNF is stricter than 3 NF	
	(2) Lossless, dependency-preservin	g decomposition into 3 NF is always possible
	(3) Lossless, dependency—preserv possible	ing decomposition into BCNF is always
	(4) Any relation with two attribute	es is BCNF
(330)	•	5 (P.T.O.)
	•	

25.	Which is a bottom-up approach the relationship between attribut	o database design that design by examining es?
	(1) Functional dependency	(2) Database modelling
	(3) Normalization	(4) Decomposition
26.	Which forms are based on the co	oncept of functional dependency?
	(1) 1NF (2) 2NF	(3) 3NF (4) 4NF
27.	Empdt (empcode, name, street, o	city, state, pincode)
	For any pincode, there is only one State, there is just one pincode. In	city and State. Also, for given street, city and normalization terms, empdt 1 is a relation in
	(1) 1 NF only	
	(2) 2 NF and hence also in 1 N	P.
	(3) 3 NF and hence also in 2 N	Fand 1 NF -
	(4) BCNF and hence also in 3 M	
28.	Which of the following indicates involved in a relationship?	the maximum number of entities that can be
	(1) Minimum cardinality	(2) Maximum cardinality
	(3) ERD	(4) Greater Entity Count (GEC)
29.		in the database unless another type of entity oes not require that the identifier of that other own identifier?
	(1) Weak entity	(2) Strong entity
	(3) ID-dependent entity	(4) ID-independent entity
(330)		6
-		

- 30. Which type of entity represents an actual occurrence of an associated generalized entity?
 - (1) Supertype entity

(2) Subtype entity

(3) Archetype entity

- (4) Instance entity
- 31. Which of the following is object-oriented development life cycle?
 - (1) Analysis, design and implementation steps in the given order and using multiple iterations
 - (2) Analysis, design and implementation steps in the given order and going through the steps no more than one time
 - (3) Analysis, design and implementation steps in any order and using multiple iterations
 - (4) Analysis, design and implementation steps in any order and going through the steps no more than one time
- 32. Which of the following is Aggregation?
 - (1) Expresses a part-of relationship and is a stronger form of an association relationship
 - (2) Expresses a part-of relationship and is a weaker form of an association relationship
 - (3) Expresses an is-a relationship and is a stronger form of an association relationship
 - (4) Expresses an is-a relationship and is a weaker form of an association relationship

(330)

33.	Which of the following is not a meth information?	od to preserve the security and integrity of
	(1) Antivirus software	(2) Firewall
	(3) Phishing	(4) Disk Encryption
34.	Which of the following addresses is	most commonly used loopback address?
	(1) 0.0.0.1	(2) 127.1.1.1
	(3) 127.0.0.1	(4) 255.255.255.255
35.	What is Extranet?	
	(1) An extra fast computer network	k
	(2) The intranet of two cooperating leased line	organisations interconnected via a secure
	(3) An extra network used by an	organization for higher reliability
	(4) An extra connection provided t	o cooperating organization
36.	Debug is a term denoting	
	(1) error correction processes	·
	(2) writing of instructions in devel	oping a new program
	(3) fault detection in equipment	
	(4) determining useful life	
37.	One megabyte equals approximate	ly
	(1) 1000 bits	(2) 1000 bytes
	(3) 1 million bytes	(4) 1 million bits
(330)		8

35.	on opening of a Websit	Web pages and - e,	is the very first pag	e that we see
	(1) Home-page, web-pa	ge (2) Website, home-page	
	(3) Web-page, home-pa	ge (4)	Web-page, website	
39.	A honey pot is an exam	iple of what typ	e of software?	
	(1) Encryption	(2)	Security-auditing	
	(3) Virus	(4)	Intrusion-detection	
40.	The basic concepts of e	thics in informa	tion society is/are	
	(1) responsibility	(2)	accountability	
	(3) liability	(4)	All of the above	
41,	Mechanism to protect p	rivate networks	from outside attack is	
	(1) firewall	(2)	antivirus	
	(3) digital signature	(4)	formating	·
42.	Which infrastructure inc	ludes application	n servers, data servers, a	und clients?
	(1) Client/server	(2)	Thin client	
	(3) 2-tier infrastructure	(4)	3-tier infrastructure	
43.	All of the following are e	xamples of real	security and privacy risk	ts, except
	(1) hackers (2) sp	am (3)	viruses (4) identif	ly theft
(330)		9 -		(P.T.O.)

44.	What is a person called when they try to computer?	o hurt a group of people with the use of a
	(1) White hat intruder	(2) Cracker
	(3) Social engineer	(4) Cyber terrorist
45.	In the decimal numbering system, w	hat is the MSD?
	(1) The middle digit of a stream of r	umbers
	(2) The digit to the right of the deci-	mal point
	(3) The last digit on the right	
	(4) The digit with the most weight	
46.	What is a digital-to-analog converter	· -
	(1) It takes the digital information fro form	m an audio CD and converts it to a usable
	(2) It allows the use of cheaper analog	techniques, which are always simpler
	(3) It stores digital data on a hard	irive
	(4) It converts direct current to alte	rnating current
47.	A full subtracter circuit requires	
	(1) two inputs and two outputs	(2) two inputs and three outputs
	(3) three inputs and one output	(4) three inputs and two outputs
48.	How many address bits are neede 2118 16 K × 1 RAM?	d to select all memory locations in the
	(1) 8 (2) 10	(3) 14 (4) 16
(330)	10	

49. A flip-flop has

(1) one stable state

(2) no stable state

(3) two stable states

(4) four stable states

50. Determine the values of A, B, C and D that make the sum term $\overline{A} + B + \overline{C} + D$ equal to zero

- (1) A = 1, B = 0, C = 0, D = 0
- (2) A = 1, B = 0, C = 1, D = 0
- (3) A = 0, B = 1, C = 0, D = 0
- (4) A = 1, B = 0, C 1, D = 1

51. One of De Morgan's theorems states that $\overline{X + Y} = \overline{XY}$, Simply stated, this means that logically there is no difference between

- (1) a NOR and an AND gate with inverted inputs
- (2) a NAND and an OR gate with inverted inputs
- (3) an AND and a NOR gate with inverted inputs
- (4) a NOR and a NAND gate with inverted inputs

52. One positive pulse with $t_w = 75 \,\mu s$ is applied to one of the inputs of an exclusive-OR circuit. A second positive pulse with $t_w = 15 \,\mu s$ is applied to the other input beginning 20 μs after the leading edge of the first pulse. Which statement describes the output in relation to the inputs?

- (1) The exclusive-OR output is a 20 μs pulse followed by a 40 μs pulse, with a separation of 15 μs between the pulses
- (2) The exclusive-OR output is a 20 μs pulse followed by a 15 μs pulse, with a separation of 40 μs between the pulses
- (3) The exclusive-OR output is a 15 μs pulse followed by a 40 μs pulse
- (4) The exclusive-OR output is a 20 μs pulse followed by a 15 μs pulse, followed by a 40 μs pulse

53.	On the fifth clock $Q_3 = 1$. On the six	pulse, a 4-bit Joh th clock pulse, the			$Q_1 = 1, Q_2 = 1$ and
	(1) $Q_0 = 1$, $Q_1 = 0$,	$Q_2 = 0, Q_3 = 0$	(2) $Q_0 = 1$, ($Q_1 = 1, Q_2 = 3$	$I, Q_3 = 0$
	(3) $Q_0 = 0$, $Q_1 = 0$,	$Q_2 = 1, Q_3 = 1$	(4) $Q_0 = 0$,	$Q_1 = 0, Q_2 =$	$Q_3 = 1$
54.	input is HIGH. The	bit shift register is e nibble 1011 is wa lock pulses, the si	iting to be en	itered on th	
	(1) 1101	(2) 0111	(3) 0001	(4)	1110
55.	The check sum n	nethod of testing a	ROM		
	(1) indicates if th	e data in more th	an one mem	ory location	is incorrect
	(2) provides a me locations	ans for locating an	d correcting o	iata errors	in specific memory
	(3) allows data es	rrors to be pinpoir	ited to a spe	cific memo	ry location
	(4) simply indicate	tes that the conter	nts of the RC	M are inco	orrect
56.	Convert the binar	y number 1001-00	010 ₂ to decim	nal	•
	(1) 90-125	(2) 9·125	(3) 125	(4)	12.5
57.	A typical PC use address?	s a 20-bit address	code, how	much men	cory can the CPU
	(1) 20 MB	(2) 10 MB	(3) 1 MB	(4)	580 MB
58.	Convert 59 72 ₁₀	to BCD			
	(1) 111011	•	(2) 010110	01-011100	10
	(3) 1110-11		(4) 010110	010111001	.0
(330)		12	2		

		·
5 9 .	Solving $-11+(-2)$ will yield whi	ch two's-complement answer?
	(1) 1110 1101 (2) 1111 100	1 (3) 1111 0011 (4) 1110 1001
60.	Which of the following combination	ons cannot be combined into K-map groups?
	(1) Corners in the same row	(2) Corners in the same column
	(3) Diagonal corners	(4) Overlapping combinations
61.	Which statement BEST describes flip-flop?	the operation of a negative-edge-triggered I
	(1) The logic level at the D inpu	t is transferred to Q on NGT of CLK
	(2) The Q output is ALWAYS ident	tical to the CLK input if the D input is HIGH
	(3) The Q output is ALWAYS ide	ntical to the D input when $CLK = PGT$
	(4) The Q output is ALWAYS ide	ntical to the D input
62.	How is a J-K flip-flop made to to	oggle?
•	(1) $J = 0, K = 0$	(2) $J = 1, K = 0$
	(3) $J = 0, K = 1$	(4) $J = 1, K = 1$
63.	Using four cascaded counters with deleted to achieve a modulus of	n a total of 16 bits, how many States must be 50000?
•	(1) 50000 (2) 65536	(3) 25536 (4) 15536
64.	A basic multiplexer principle can	be demonstrated through the use of a
	(1) single-pole relay	(2) DPDT switch
	(3) rotary switch	(4) linear stepper
(330)		13 (P.T.O.)
	•	•

65.	What control signals may be necessary	to o	perate a 1-li	ne-to-16 lin	e decoder?		
	(1) Flasher circuit control signal	•					
	(2) A LOW on all gate enable inputs						
	(3) Input from a hexadecimal counter	•	•				
	(4) A HiGH on all gate enable circuits	3					
66.	. Which one of the following is not Tru	e?					
	(1) Kernel is the program that consti	tut	es the cent	ral core of	the operating		
	(2) Kernel is the first part of operation booting	ng	system to 1	oad into m	emory during		
	(3) Kernel is made of various modul- operating system	CB	which cann	ot be loade	ed in running		
	(4) Kernel remains in the memory du	ırin	g the entire	computer	session		
67.	. Which facility dynamically adds prot processes and in the kernel?	es	to a runni	ng system,	both in user		
	(1) DTrace (2) DLocate	(3)	DMap	(4) DA	id		
68.	. A process can be terminated due to						
	(1) normal exit	(2)	fatal error	_			
	(3) killed by another process	(4)	all of the n	nentioned			
69.	. A process stack does not contain						
	(1) function parameters	(2)	iocal varial	oles			
	(3) return addresses	(4)	PID of chile	i process			
(330)	D) 14		•				

70.	A bootstrap is		
	(1) a memory device	•	
	(2) a device to support the	computer	
	(3) a small initialisation pr	rogram to start up a computer	
	(4) an error correction tecl	nique	
71.	Time quantum is defined i	n	
	(1) shortest job scheduling	algorithm	
	(2) round-robin scheduling	algorithm	
	(3) priority scheduling algo-	rit hm	
	(4) multilevel queue schedu	lling algorithm	
72.		processes access and manipulatine of the execution depends on the is called	
	(1) data consistency	(2) race condition	
	(3) aging	(4) starvation	
73.	The segment of code in w update tables, write into fil	hich the process may change c es is known as	common variables
	(1) program	(2) critical section	
	(3) non-critical section	(4) synchronizing	
(330)		15	(P.T.O.)

74.	4. Which of the following conditions is required for deadlock to be possible?								
	(1) Mutual exclusion								
	(2)	A process may hold allocated resources	urc	es while awaiting assignment of other					
	(3)	No resource can be forcibly remo	ved	from a process holding it					
	(4)	All of the mentioned							
75.		nen a program tries to access a page ided in physical memory, then	th:	at is mapped in address space but not					
	(1)	segmentation fault occurs	(2)	fatal error occurs					
	(3)	page fault occurs	(4)	no error occurs					
76.	A	process is thrashing if							
	(1) it is spending more time paging than executing								
	(2)	(2) it is spending less time paging than executing							
	(3)	3) page fault occurs							
	(4)	swapping cannot take place							
77.	Th	e depth of a complete binary tree	is	given by					
	(1)	$Dn = n \log 2n$	(2)	$Dn = n \log 2n + 1$					
	(3)	$Dn = \log 2n$	(4)	$Dn = \log 2n + 1$					
78.	A	binary tree whose every node has	citi	her zero or two children is called					
	(1)	complete binary tree	(2)	binary search tree					
	(3	extended binary tree	(4)	data structure					
(330)		16	•						

- 79. When representing any algebraic expression E which uses only binary operations in a 2_tree, is
 - (1) the variable in E will appear as external nodes and operations in internal nodes
 - (2) the operations in E will appear as external nodes and variables in internal nodes
 - (3) the variables and operations in E will appear only in internal nodes
 - (4) the variables and operations in E will appear only in external nodes
- 80. A binary tree can easily be converted into q 2_tree is
 - (1) by replacing each empty subtree by a new internal node
 - (2) by inserting an internal nodes for non_empty node
 - (3) by inserting an external nodes for non_empty node
 - (4) by replacing each empty subtree by a new external node
- **81.** When converting binary tree into extended binary tree, all the original nodes in binary tree are
 - (1) internal nodes on extended tree
 - (2) external nodes on extended tree
 - (3) vanished on extended tree
 - (4) live nodes
- 82. Which of the following sorting algorithms is of divide_ and _conquer type?
 - (i) Bubble sort

(2) Insertion sort

(3) Quick sort

(4) Radix sort

(**330**) 17 (P.T.O.)

83.	In a graph if $e = (u, v)$ means							
	(1) u is adjacent to v but v is	not adjacent to u						
	(2) e begins at u and ends at	υ						
	(3) u is node and v is an edge							
	(4) both u and v are edges	•						
84.	If every node u in G is adjacent to	every other node v in G , A graph is said to) b					
	(1) isolated	(2) complete						
	(3) finite	(4) strongly connected						
85.	Two main measures for the eff	iciency of an algorithm are						
	(1) processor and memory	(2) complexity and capacity						
	(3) time and space	(4) data and space						
86.	Which of the following cases d	oes not exist in complexity theory?						
	(1) Best case	(2) Worst case						
	(3) Average case	(4) Null case						
87.	The worst case occur in linear	search algorithm when an						
	(1) item is somewhere in the i	middle of the array						
	(2) item is not in the array at	ali						
	(3) item is the last element in	the array						
	(4) item is the last element in	the array or is not there at all						
330)		18						

- 88. The complexity of merge sort algorithm is
 - (1) O(n)
- (2) $O(\log n)$
- (3) O(n2)
- (4) $O(n \log n)$

- 89. Linked lists are best suited
 - (1) for relatively permanent collections of data
 - (2) for the size of the structure and the data in the structure are constantly changing
 - (3) data structure
 - (4) collections
- 90. The memory address of fifth element of an array can be calculated by the formula
 - (1) LOC (Array[5] = Base(Array) + w(5_lower boun4., where w is the number of words per memory cell for the array
 - (2) LOC(Array[5]) = Base(Array[4]) + (5_lower boun4., where w is the number of words per memory cell for the array
 - (3) LOC(Array[5]) = Base(Array[4]) + (5_Upper boun4., where w is the number of words per memory cell for the array
 - (4) Base(array[5]) + (5_lower boun4., where w is the number of words per memory cell for the array
- 91. A variable P is called pointer if
 - (1) P contains the address of an element in DATA
 - (2) P points to the address of first element in DATA
 - (3) P can store only memory addresses
 - (4) P contains the DATA and the address of DATA

(P.T.O.)

92.	When in-order traversing a tree resulted E A C K F H D B G; the pre-ord traversal would return					
,	(1) FAEKCDBH	ıG	(2)	FAEKCDHG	B ,	
	(3) EAFKHDCE	o C	(4)	FEAKDCHB	3	
93.	Exit loop is ap	plicable to —	level o	of loops.		
	(1) 1:	(2) 3	(3)	2	(4) all nested	loops
94.	A doubly linker	d list has ——	— pointers	with each ne	ode.	
	(1) 0	(2) 1	(3)	2	(4) 3	
95.	In a stack the co	ommand to acc	ess nth elem	ent from the	top of the stack	S will be
	(1) S [Top_n]		· (2)	S [Top + n]		
	(3) S [top_n_1]		(4)	S [top_1]		
96.	The result $a = 3$, $b = 6$, $c = 1$		ng prefix	expression	*/b+_dacd,	where
	(1) 0	(2) 5	(3)	10	(4) 15	
97.	A ——— is tab address is assi	le of keys and gned to each l	l addresses cey.	in which a	unique external	storage
	(1) hash table		(2)	address tabl	e .	
	(3) mapping ta	ble	(4)	cross referer	nce table	
(330)			20			
				•		

98	. The address	resolution protocol (ARP) is used for	or			
	(1) finding the IP address from the DNS						
		e IP address of the		V			
		e IP address that co		•			
		e MAC address that					
_ ;							
99.	causes	immediate, uncondi	tional exit.				
	(1) Goto	(2) Return(x)	(3) Write () (4) Exit loop			
100.	Let G be a sim- connected gra- the plane is e	pn, then the number	graph on 10 v of bounded fa	ertices with 15 edges. I ces in any embedding	lf G is a of G on		
	(1), 3	(2) 4	(3) 5	(4) 6			
101.	be the time t	ck sort program to so aken by the program Thich of the following	m for the inp	ascending order. Let t_1 uts $[12345]$ and $[5]$	and t ₂ 4 3 2 1]		
	(1) $t_1 = t_2$		(2) $t_1 > t_2$				
	(3) $t_1 < t_2$	•	(4) $t_1 = t_2 +$	5 log 5			
102.	(from the symb	object module proceed table) mapping all purpose of this inf	source progra	mpiler includes inform m names to their addi	nation esses.		
	(1) for use as	input to a debugging	g aid				
	(2) to increase	the run-time efficien	ncy of the pro	gram			
	(3) for the red	uction of the symbol	table space n	eeded by the compiler	.		
		loader where each va		_			
(330)		2			P. <i>T.O.</i>)		
•				.			

103. A critical region is

- (1) one which is enclosed by a pair of P and V operations an semaphores
- (2) a program segment that often causes unexpected system crashes
- (3) a program segment that has not been proved bug-free
- (4) a program segment where shared resources are accessed
- 104. Two computers communicate with each other by sending data packets across a local area network. The size of these packets is 1000 bytes. The network has the capacity to carry 1000 packets per second. The CPU time required to execute the network protocol to send one packet is 10 milliseconds. The maximum rate at which one computer can send data to another is approximately
 - (1) 10000 bytes/second
- (2) 25000 bytes/second
- (3) 100000 bytes/second
- (4) 1000000 bytes second
- 105. In a 16-bit computer, 10 digits are allotted for mantissa (including one sign digit) and 6 digits are allotted for exponent (including one sign digit) write the value of the function given below, in normalized form when n=5

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}$$

(1) O:1111 E 11

- (2) 0-00001 E 10
- (3) + 0-111110000 E + 00
- (4) + 0-111111 E+10

104	Which	-6-4-	6-11				_	_			
+04.	WITHCH	or the	TOTTOMINE	assertions	18	false	about	the	internet	Protocol	(IP)?

- (1) It is possible for a computer to have multiple IP addresses
- (2) IP packets from the same source to the same destination can take different routes in the network
- (3) IP ensures that a packet is forwarded if it is unable to reach its destination within a given number of hopes
- (4) The packet source cannot set the route of an outgoing packets; the route is determined only by the routing tables in the routers on the way

107. A table for values of x and y is given below

x 93·0 96·2 100·0 104·2 108·7

y 11:38 12:80 14:70 17:07 19:91

Using Lagrange's formula the value of x when y = 13.5 will be

- (1) 98-14
- (2) 97.66
- (3) 96.99
- 4) 96-43

108. In the solution of ordinary differential equations in case $\frac{dy}{dx}$ is a function of alone, then which pair of methods becomes identical?

- (1) Simpson's rule and trapezoidal rule
- (2) Trapezoidal rule and Euler's method
- (3) Simpson's rule and Runge-Kutta method
- (4) Euler's method and Runge-Kutta method

1 09 .	The results obtained by using Simpson's rule will be greater than those obtained by using the trapezoidal rule
	(1) in all cases
	(2) provided the intervals are small

(3) provided the boundary is concave towards the base line

(4) provided the boundary is convex towards the base line

110. If $f(x_i) f(x_{i+1}) < 0$, then

- (1) there must be a root of f(x) between x_i and x_{i+1}
- (2) there need not be a root if f(x) between x_i and x_{i+1}
- (3) the fourth derivative of f(x) with respect to x vanishes at x_i
- (4) the fourth derivative of f(x) with respect to x vanishes at x_{i+1}
- 111. The probability that a single bit will be in error on a typical public telephone line using 4800 bps modem is 10 to the power -3. If no error detection mechanism is used, the residual error rate for a communication line using 9-bit frames is approximately equal to
 - (1) 0.003
- (2) 0.009
- (3) 0.991
- (4) 0.999
- 112. Which of the following scheduling algorithms is non-preemptive?
 - (1) Round robin
 - (2) First-in first-out
 - (3) Multilevel queue scheduling
 - (4) Multilevel queue scheduling with feedback

(330)

1	13,	The	ር,	language	is
---	-----	-----	----	----------	----

- (1) a context free language
- (2) a context sensitive language
- (3) a regular language
- (4) parable fully only by a Turing machine

114. In a J-K flip-flop, toggle means

- (1) set Q=1 and Q=0
- (2) set Q = 0 and Q = 1
- (3) change the output to the opposite state
- (4) no change in output

115. Which of the following is NOT true about thrashing?

- (1) Effects of thrashing can be limited by a local replacement algorithm
- (2) When thrashing occurs it implies that the degree of multiprogramming is high
- (3) Effective access time increases only for the thrashing processes
- (4) The processes will be in the queue for the paging device cost of the time
- 116. A pipeline processing with 4 segments and 100 sub-operations take 20 ns to process a sub-operation in each segment. The speed up ratio of pipeline processing to sequential processing is
 - (1) 3.80
- (2) 3-88
- (3) 3.90
- (4) 3.85

(330)

25

(P.T.O.)

What will be output of following pr	ogram?	
main()	·	~
(
int 1 = 5; printf("%d%d%d%d%d%d%d",i++,	i,++i,i,i);	
}	(4) 54544	
(1) 45545 (2) 54545	(3) 44555 (7) 07011	
In 'C' programming, if an array is passed	used as a function argument, the aray is	ì
(1) by value		
(2) by reference		
(3) none of these as array cannot	t be used a function argument	
(4) call by name		
. The programming language feature out differently depending on the	object 18	d
(1) polymorphism	•	
(3) allocation	(4) mangling	
). Reserving memory during program	m execution is known as reserving it	
	(3) functionally (4) powerfully	
(1) dynamically (2) statically	(b) Idirectorisms	
(2)	on gives exact result when the integrand is	а
1. The trapezoidal rule for integration		а
The trapezoidal rule for integration polynomial of degree	on gives exact result when the integrand is	a
	int i = 5; printf("%d%d%d%d%d%d%d,i++, } (1) 45545 (2) 54545 In 'C' programming, if an array is passed (1) by value (2) by reference (3) none of these as array cannot (4) call by name The programming language feature out differently depending on the (1) polymorphism (3) allocation Reserving memory during programs.	int i = 5; printf("%d%d%d%d%d%d%d,i++,i,++i,i,i); } (1) 45545 (2) 54545 (3) 44555 (4) 54544 In 'C' programming, if an array is used as a function argument, the aray is passed (1) by value (2) by reference (3) none of these as array cannot be used a function argument (4) call by name The programming language feature that allows the same operation to be carried out differently depending on the object is (1) polymorphism (2) inheritance (3) allocation (4) mangling Reserving memory during program execution is known as reserving it

(1) AND bitwis		e performed throug		
	e operator	(OL VOD bie-	·	
(3) OR hitwise		(4) AUK DITWI	se operator	
(a) are arentab	operator			
In databases, i	ocking level is als	o called as		
(1) gramulority	(2) S lock	(3) X lock	(4) dead lock	
The in order and c f g, respective	i pre-order travers ly. The post-orde	sal of a binary tree a r traversal of the b	redbeafcganda inary tree is	bde
(1) debfgca				
Which of the fo	llowing is not an	scripting language		
(1) HTML	(2) XML	(3) Postscript	(4) Javascript	
An algorithm is Then the comple	made up of two in exities of the algo	ndependent time con rithm is in the ord	uplexities $f(n)$ and g	g(n).
(1) $f(n) \times g(n)$,	(2) max (f(n),	g(n))	
(3) $\min(f(n), g)$	(n))	$(4) \ f(n) + g(n)$		
The Protocol Date	a Unit (PDU) for th	e application layer i	n the Internet stack is	8
(1) segment	(2) datagram	(3) message	(4) frame	
The hexadecimal	representation of	f 6578 is		
(1) 1AF	(2) D78	(3) D71	(4) 32F	
		27	, (D.1	ro:
			(F. 2	,
	In databases, in (1) gramulority The in order and c f g, respective (1) debiges Which of the for (1) HTML An algorithm is Then the complet (1) f(n)×g(n) (3) min (f(n), g) The Protocol Data (1) segment The hexadecimal	(1) gramulority (2) S lock The in order and pre-order travers of g, respectively. The post-order (1) debfgca (2) edbgfca Which of the following is not an (1) HTML (2) XML An algorithm is made up of two in Then the complexities of the algorithm (1) f(n) × g(n) (3) min (f(n), g(n)) The Protocol Data Unit (PDU) for the (1) segment (2) datagram The hexadecimal representation of (1) 1AF (2) D78	(3) OR bitwise operator In databases, locking level is also called as (1) gramulority (2) S lock (3) X lock The in order and pre-order traversal of a binary tree a c f g, respectively. The post-order traversal of the b (1) debfgca (2) edbgfca (3) edbfgca Which of the following is not an scripting language (1) HTML (2) XML (3) Postscript An algorithm is made up of two independent time contract the complexities of the algorithm is in the ord (1) $f(n) \times g(n)$ (2) $\max(f(n), g(n))$ (3) $\min(f(n), g(n))$ (4) $f(n) + g(n)$ The Protocol Data Unit (PDU) for the application layer in (1) segment (2) datagram (3) message The hexadecimal representation of 6578 is	(3) OR bitwise operator (4) shift operator In databases, locking level is also called as (1) gramulority (2) S lock (3) X lock (4) dead lock The in order and pre-order traversal of a binary tree are d b e a f c g and a c f g, respectively. The post-order traversal of the binary tree is (1) debigca (2) edbgica (3) edbigca (4) defgbca Which of the following is not an scripting language? (1) HTML (2) XML (3) Postscript (4) Javascript An algorithm is made up of two independent time complexities $f(n)$ and graph the complexities of the algorithm is in the order of (1) $f(n) \times g(n)$ (2) $\max (f(n), g(n))$ (3) $\min (f(n), g(n))$ (4) $f(n) + g(n)$ The Protocol Data Unit (PDU) for the application layer in the Internet stack is (1) segment (2) datagram (3) message (4) frame The hexadecimal representation of 6578 is (1) 1AF (2) D78 (3) D71 (4) 32F

129.	Where does the	swap space reside?		
	(1) RAM	(2) Disk	(3). ROM	(4) On-chip cache
130.	Consider a mad space. If the pay	chine with 64 MB phy ge size is 4 KB, what i	ysical memory a is the approxima	nd a 32-bit virtual address te size of the page table?
	(1) 16 MB	(2) 8 MB	(3) 2 MB	(4) 24 MB
131.	An Abstract Di	ata Type (ADT) is		
	(1) same as as	abstract class		
(2) a data type that cannot be instantiated(3) a data type for which only the operations defined on it cannone else				
				ned on it can be used, but
	(4) All of the	above		
132. A common property of logic programming languages and functional is				es and functional languages
	(1) both are p	rocedural language	(2) both are	based on \u03b3-calculus
	(3) both are d	leclarative	(4) All of the	above
133.		the following is a leary max heap?	a valid sequen	ce of elements in an array
	(1) 1, 3, 5, 6,	, 8, 9	(2) 9, 6, 3,	1, 8, 5
	(3) 9, 3, 6, 8,	, 5, 1	(4) 9, 5, 6,	8, 3, 1.
(330)	1		28	

134.	Which of the following would inc	licate that the motherboard battery i	has failed?
	(1) Operating system password		
	(2) Files on the hard disk are	lost and corrupted	
_		g virtual memory reverts to defaul	t values
		g the current date and time revert	
135.	Which American computer com	pany is called Big Blue?	
	(1) IBM	(2) Compaq Corp	
	(3) Microsoft	(4) Tandy Svenson	
136.	Which of the following is NOT a	function of the control unit?	
	(1) Read instructions	(2) Interpret instruction	-
	(3) Direct operation	(4) Execute instructions	
137.	The technology used to read pen sheet is	cil or pen marks on a multiple cho	ice answer
	(1) OCR (2) OMR	(3) POS (4) MICR	
138.	An airline reservation system is	an example of	
	(1) batch processing	(2) real time processing	
,	(3) interactive processing	(4) distributed processing	-
(330)		29	(P.T.O.)

1 39.	Persons at a downtown café realized that they were able to access the Internet on their laptop computers. The café could be considered as a			
	(1) metropolitan area network	(2) hotspot		
	(3) local area network	(4) satellite		
140.	Which of the following pair of item	s is used to create webpage?		
	(1) Homepage and website	(2) HTML and authoring tool		
	(3) ISP and web browser	(4) Internet and URL		
141.	•			
		selling of software that is copyrighted		
	(2) the authorized copying, use or	selling of software that is not copyrighted		
	(3) the unauthorized copying, use	or selling of software that is copyrighted		
	(4) the unauthorized copying, use	or selling of software that is not copyrighted		
142.	Which of the following is not the	characteristic of software?		
	(1) Software does not wear out	(2) Software is flexible		
	(3) Software is not manufactured	(4) Software is always correct		
143.	In object-oriented design of software	are, objects have		
	(1) attributes and names only			
	(2) operations and names only	· .		
	(3) attributes, name and operation	ns ·		
	(4) attributes only			
(330)	30		

		• •		
144.	A	script	18	я
• •				-

- (1) program or sequence of instructions that is interpreted or carried out by processor directly
- (2) program or sequence of instruction that is interpreted or carried out by another program
- (3) program or sequence of instruction that is interpreted or carried out by web server only
- (4) All of the above
- 145. PHP is a widely used ——— scripting language that is especially suited for web development and can be embedded into HTML.
 - (1) open source general purpose
- (2) proprietary general purpose
- (3) open source special purpose
- (4) proprietary special purpose
- 146. A web cookie is a small piece of data
 - (1) sent from a website and stored in user's web browser while a user is browsing a website
 - (2) sent from user and stored in the server while a user is browsing a website
 - (3) sent from root server to all servers
 - (4) sent from user to root servers
- 147. An alternative of Javascript on Windows platform is
 - (1) VB Script
- (2) ASP.NET
- (3) JSP
- (4) HTML

(330)

(P.T.O.)

148.	when internet data leaves your campus, it normally goes to a(n) ————————————————————————————————————			
	(1) Internet backbone	(2) network access point		
	(3) base station	(4) communication system		
149.	Black box testing sometimes called	i ·		
	(1) data flow testing	(2) loop testing		
-	(3) behavioural testing	(4) graph based testing		
150.	The goal of structured programmic	ng is to		
	(1) have well indented programs			
	(2) be able to infer the flow of control from the compiled code			
	(3) be able to infer the flow of control from the program text			
	(4) avoid the use of GOTO statem	ents		

**

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्याइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न खूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना *अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरम-पृष्ट पर पेन* से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। यहाँ-यहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं॰ और ओ॰ एम॰ आर॰ पत्र सं॰ की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरोक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्त-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको असर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाड़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अधवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का *उत्तर नहीं देना चाहते* हैं तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जारेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- परीक्षा के उपरान्त केवल औ०एम०आर० उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।